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Abstract
Visual tracking has been typically solved as a binary

classification problem. Most existing trackers only consider
the pairwise interactions between samples, and thereby ig-
nore the higher-order contextual interactions, which may
lead to the sensitivity to complicated factors such as noises,
outliers, background clutters and so on. In this paper, we
propose a visual tracker based on support vector machines
(SVMs), for which a novel graph mode-based contextual
kernel is designed to effectively capture the higher-order
contextual information from samples. To do so, we first cre-
ate a visual graph whose similarity matrix is determined
by a baseline visual kernel. Second, a set of high-order
contexts are discovered in the visual graph. The problem
of discovering these high-order contexts is solved by seek-
ing modes of the visual graph. Each graph mode corre-
sponds to a vertex community termed as a high-order con-
text. Third, we construct a contextual kernel that effectively
captures the interaction information between the high-order
contexts. Finally, this contextual kernel is embedded into
SVMs for robust tracking. Experimental results on chal-
lenging videos demonstrate the effectiveness and robustness
of the proposed tracker.

1. Introduction
Recently, visual tracking has attracted much research at-

tention. It remains a challenging problem due to issues such
as complicated appearance and illumination change, occlu-
sion, cluttered background etc. To build a robust tracker, a
variety of appearance models using different learning tech-
niques have been proposed in the literature. According to
the learning techniques, these appearance models may be
roughly classified into two categories: generative learning
based and discriminative learning based appearance mod-
els. Generative learning based appearance models (GLMs)
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mainly concentrate on how to construct robust object repre-
sentation in specified feature spaces, including the integral
histogram [1], kernel density estimation [3], spatial-color
mixture of Gaussians [2], subspace learning [18, 19, 20],
sparse representation [4, 23], visual tracking decomposi-
tion [17] and so on. A drawback of these methods is that
they often ignore the influence of background, and conse-
quently suffer from distractions caused by the background
regions with similar appearance to foreground objects.

In contrast, discriminative learning based appearance
models (DLMs) aim to maximize the inter-class separabil-
ity between the object and non-object regions using dis-
criminative learning techniques, including SVMs [7, 8, 21],
boosting [5, 6], random forest [14], multiple instance learn-
ing [9], spatial attention learning [13], etc. Most of these
DLMs have used the pairwise interaction information from
samples for object/non-object classification, and conse-
quently ignore the higher-order contextual interaction in-
formation (e.g., the interaction between two contexts in
Fig. 1(d)). As a result, they may achieve unstable or unsuc-
cessful tracking performance since the pairwise interactions
are easily corrupted by complicated factors such as noises,
outliers, background clutters and so on. In this paper, we
show that the contextual information can play an important
role in DLMs based tracking.

Motivation Typically, the pairwise similarity of two
samples is based only on the individual samples themselves.
Once one sample is corrupted by noise, their pairwise sim-
ilarity will change significantly, so their true affinity cannot
be computed in a stable way. Thus, designing a robust sim-
ilarity measure is a key issue in visual tracking.

In this paper, we show that the high-order contextual
information from samples can help to alleviate this issue.
Usually, a high-order context is defined as a group of sam-
ples having some common properties. Each sample in the
high-order context is influenced by other samples in the
same high-order context. In this case, the similarity mea-
sure depends on not only two individual samples but also
their corresponding contexts. Thus, although the pairwise
interaction between two individual samples is sensitive to
noise, the interaction (illustrated in Fig. 1(d)) between their
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high-order contexts is much more stable because it consid-
ers more cross-link information from their high-order con-
texts. Even if the pairwise similarity is corrupted, the high-
order contextual interaction can still provide complemen-
tary information to counteract the impact of noise.

Here we propose a robust tracker that is based upon a
graph mode-based contextual kernel for SVM tracking. Our
main contributions are three-fold.

1. We introduce the high-order context into the visual
tracking process. The high-order context of a sample is
defined as a set of samples with similar visual content
to the sample. Moreover, we design a contextual sim-
ilarity measure (defined in Eq. (7)) between two high-
order contexts to capture their interaction information.

2. The problem of building the high-order context is con-
verted to that of graph mode seeking, which can auto-
matically discover the modes (i.e., dense subgraphs) of
a given visual graph characterized by a baseline visual
kernel. According to the information provided by the
graph modes, we can find that the graph vertexes be-
longing to the same vertex community have some com-
mon visual properties, as illustrated in Fig. 2. Such
vertex communities correspond to high-order contexts.

3. We design a novel contextual kernel that fully com-
bines the information from the baseline visual kernel
and the high-order contexts. The contextual kernel
takes a large value when samples share not only the
similar visual content but also the mutually correlated
high-order contexts. We also prove that the designed
contextual kernel is a Mercer kernel. Therefore, we
can naturally embed the contextual kernel into an SVM
for robust tracking.

Related work Discriminative learning based tracking
An online AdaBoost classifier [5] is developed for discrim-
inative feature selection, which enables the tracker to adapt
to appearance variations caused by out-of-plane rotations
and illumination changes. Later, Grabner et al. [6] present
a semi-supervised online boosting algorithm for tracking.
This algorithm can significantly alleviate the model drifting
problem caused during updating the model for the online
AdaBoost classifier. Avidan [10] constructs a confidence
map by pixel-wise classification using an ensemble of on-
line learned weak classifiers, and mean shift is used to lo-
cate the mode of the confidence map. Collins et al. [11]
propose online feature selection for robust tracking. They
try to find the most discriminative linear combination of the
RGB color channels at each frame. Liu and Yu [12] propose
an efficient online boosting algorithm based on gradient-
based feature selection for pedestrian tracking. Babenko et
al. [9] present a tracking system based on online multiple
instance boosting. Their tracker is able to update the ap-
pearance model with a set of image patches, which is robust

but can lose accuracy if none of the patches precisely cap-
ture the object appearance information.

Avidan [7] proposes an off-line SVM-based tracking
algorithm for distinguishing a target vehicle from back-
grounds. Since the algorithm needs many labeled training
data, extending the algorithm to general object tracking is
difficult. Tian et al. [8] utilize the ensemble of linear SVM
classifiers for visual tracking. These classifiers can be adap-
tively weighted according to their discriminative abilities
during different periods. Tang et al. [21] present an online
semi-supervised learning based tracker. The method con-
structs two feature-specific SVM classifiers in a co-training
framework, and thus is capable for improving each indi-
vidual classifier using the information from other features.
However, all of these tracking algorithms do not take the
contextual information into account.

Context-aware tracking Yang et al. [22] propose a
context-aware tracking algorithm, which considers a set of
auxiliary objects in the tracking process. As the context of
the target, these auxiliary objects need to satisfy the follow-
ing three conditions: (a) persistent co-occurrence with the
target; (b) consistent motion correlation to the target; and
(c) easy to track. However, these conditions may not be
easily satisfied in practice.

2. The proposed visual tracker
The workflow of the proposed visual tracker is listed in

Algorithm 1. For better illustration, we elaborate the impor-
tant components of the proposed visual tracker in this sec-
tion, including contextual kernel design and training sample
selection.

Contextual kernel design For discriminative learning-
based visual tracking, a large amount of unlabeled samples
in each frame can provide rich useful contextual informa-
tion for object/non-object classification. Figs. 1 (a) and
(b) illustrate that the contextual information from unlabeled
samples may have a great influence on the SVM learning re-
sults. Hence, it is necessary to consider the influence of both
labeled and unlabeled samples in the process of designing a
contextual kernel for SVM classification. Inspired by this,
we design a contextual kernel as follows.

First, we introduce some notation used hereinafter. Let
Z = {zi}Ni=1 denote a sample set, Zl = {zi}γi=1 denote
the labeled sample subset of Z, Yl = {yi}γi=1 denote the
corresponding label set of Zl for yi ∈ {−1,+1}, and
Zu = {zi}Ni=γ+1 denote the unlabeled sample subset of Z.
Based on Z = {zi}Ni=1, we create a visual graph G with N
vertexes. Mathematically, the graph G can be denoted as
G = (V,E,W ), where V = {vi}Ni=1 is the vertex set cor-
responding to {zi}Ni=1, E ⊆ V × V is the edge set, and W
is the edge-weight function returning the affinity value be-
tween two vertexes. In practice, the graph G is formulated
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Algorithm 1 Contextual kernel-based SVM tracking
Input: Frame t, the object state L∗t−1 in the frame t−1, pre-
vious labeled sample set Zl from previous observed frames, posi-
tive maximum buffer size T+, and negative maximum buffer size
T−.
1: Sample a number of candidate object states Lt = {Li

t} using the
particle filters (referred to [18]).

2: Crop out the corresponding normalized image regions of Lt by affine
warping.

3: Extract the corresponding HOG feature set Zu = {zi}.
4: Construct the graph mode-based contextual kernel CK∗ from (12)

using the data set Z = {Zl,Zu}.
• Compute the baseline visual kernel K from (4).
• Build a visual graph G whose similarity matrix A is defined

in (3).
• Solve the optimization problem (5) to seek a set of graph modes
{Mi}Qi=1 by graph shift.
• Calculate the contextual affinity matrix C from (9).
• Compute the contextual kernel CK∗ from (12).

5: Train an SVM classifier h(z) from (14) over Zl by solving the opti-
mization problem (13).

6: Determine the optimal object state L∗t by the MAP (maximum a pos-
terior) estimation in the particle filters, where the observation model is
defined as:

p
(
zi|Li

t

)
∝

1

1 + exp (−µh(zi))
(1)

where µ is a scaling factor.
7: Extract the corresponding positive and negative support vector sets of
h(z), i.e., S+ and S−.

8: Select positive samples Z+
t and negative samples Z−t from Zu.

9: Update the labeled sample set Zl with Z+
l

⋃
Z−l , where Z+

l =

S+
⋃

Z+
t and Z−l = S−

⋃
Z−t .

• If |Z+
l | > T+, then Z+

l is truncated to keep the last T+ ele-
ments occurring recently.
• If |Z−l | > T−, then Z−l is truncated to keep the last T− ele-

ments occurring recently.
10: return The object state L∗t and the updated labeled sample set Zl.

as a weighted similarity matrix A = (aij)N×N :

aij =

{
W (vi, vj) if (vi, vj) ∈ E

0 otherwise (2)

where W (vi, vj) = K(zi, zj) with K(·, ·) being a base-
line visual kernel function. Since G is a graph without
self-loops, A = (aij)N×N is a matrix whose diagonal
elements are all zeros. As a result, the similarity matrix
A = (aij)N×N can be reformulated as:

aij =

{
K(zi, zj) if i 6= j

0 otherwise (3)

The above graph creation is independent of the choice of
kernel functions. It is easy to incorporate various kernel
functions into the above graph creation process. In our
case, the Gaussian RBF kernel function is used as the base-
line visual kernel, which evaluates the visual similarity be-
tween two image regions. Furthermore, each image region
is represented as a HOG feature descriptor (referred to [16])
in the five spatial block-division modes (like [20]). More
specifically, given two image regions, we extract their cor-
responding HOG feature vectors zi = (hi`)

r
`=1 and zj =

Figure 1: Illustration of the proposed contextual SVM learning. (a) shows the SVM
classification boundary without using the contextual information from samples; (b)
shows the SVM classification boundary using the contextual information of samples;
(c) depicts the process of computing the baseline visual similarity aij (see Eq. (3));
and (d) illustrates the process of computing the contextual similarity cij (see Eq. (7)).

(hj`)
r
`=1, where r is the HOG feature dimension. The Gaus-

sian RBF kernel function K(zi, zj) is formulated as:

K(zi, zj) = exp

(
−β

r∑
`=1

(hi` − h
j
`)

2

)
. (4)

where β is a scaling factor. Since K(zi, zj) is equal to
K(zj , zi), aij is equal to aji. Consequently, the weighted
similarity matrix A of the graph G is a symmetric matrix in
our case.

Given the graphG defined above, how to effectively cap-
ture the useful contextual information from G plays a vital
role in contextual kernel design. Due to the robustness to
noises and outliers (as claimed in [15]), a dense subgraph
of G, that is a coherent subset of vertexes in a graph, can
be used as a contextual information carrier. In the dense
subgraph, the vertexes are cohesively interconnected so that
their intrinsic properties are similar to each other. Conse-
quently, each vertex in the dense subgraph is greatly influ-
enced by the other vertexes in the same dense subgraph.
Thus, the dense subgraph is essentially a context providing
contextual information to its own vertexes. In graph the-
ory, the cohesiveness of a subset of vertexes in the graph
G is measured by a graph density whose local maxima cor-
respond to the modes of the graph G. Mathematically, the
graph density is formulated as: g(x) =

∑
i,j aijxixj =

xTAx, where x indicates a probabilistic cluster of vertexes,
and the i-th component xi of x reflects the probability of vi
belonging to this cluster. To seek the modes of the graph G,
we need to optimize the following quadratic programming
problem:

maximize g(x) = xTAx
s.t. x ∈ 4N (5)

where 4N = {x ∈ RN |x ≥ 0 and ‖x‖1 = 1}. The op-
timization problem (5) can be efficiently solved by graph
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shift [15]1. More specifically, let {Mi}Qi=1 be the Q graph
modes sought by graph shift, and Mi be the vertex index
set of the i-th graph mode. Without loss of generality, we
suppose the size ofMi is qi. Consequently,Mi is equiva-
lent to {Ii`}

qi
`=1 where Ii` indexes the `-th vertex of the i-th

graph mode. Based on Ii`, we introduce an N × 1 graph
mode vector si whose element is defined as:

si(n) =
{

1 if n ∈ {Ii`}
qi
`=1

0 otherwise (6)

where n ∈ {1, 2, . . . , N}. In this case, the affinity value
between the i-th and j-th graph modes can be measured by
the average similarity between these two graph modes (as
illustrated in Fig. 1(d)):

cij =
1

qiqj

∑
m∈{Ii`}

qi
`=1

∑
n∈{Ij`}

qj
`=1

amn (7)

For simplicity, Eq. (7) can be transformed into its matrix
form:

cij=
1

qiqj
sTi Asj=

1

qjqi
sTj A

T si=
1

qjqi
sTj Asi = cji (8)

In this case, we have a cross-mode affinity matrix Cij ∈
RN×N formulated as: Cij = cijsisTj . Thus, we can obtain
all the cross-mode affinity matrices: i.e., {{Cij}Qi=1}

Q
j=1.

By taking the average of these cross-mode affinity matrices,
a unified contextual affinity matrix C is computed to evalu-
ate the total contextual similarity between any two vertexes:

C= 1

Q2

Q∑
i=1

Q∑
j=1

Cij=
1

Q2

Q∑
i=1

Q∑
j=1

cijsisTj (9)

Based on the contextual affinity matrix C and the Gaussian
RBF kernel (4), a contextual kernel CK is designed as fol-
lows:

CK(zi, zj) = K(zi, zj) exp(C(zi, zj)) (10)

For simplicity, Eq. (10) can be transformed into its matrix
form: CK = K ◦ exp(C), where ◦ is the element-wise ma-
trix multiplication operator and exp(·) is the element-wise
exponent operator. To avoid singularity, the term exp(C)
can be replaced with exp(C)+ ξIN , where IN is an N ×N
identity matrix and ξ is a control variable which is deter-
mined by:

ξ =

{
−λ∗ if λ∗ < 0
0 otherwise (11)

where λ∗ is the minimum eigenvalue of exp(C). So we have
the final contextual kernel CK∗:

CK∗ = K ◦ (exp(C) + ξIN ) (12)

Proposition 2.1. The contextual affinity matrix C is a sym-
metric matrix.

1http://sites.google.com/site/lhrbss/

Figure 2: An example of illustrating the differences between the visual kernel and
the proposed contextual kernel. The upper part corresponds to the visual kernel while
the lower part is associated with the proposed contextual kernel, which captures the
contextual interaction relationships (i.e., cross links).

Proof. The mathematical derivation is formulated as:

CT =
1

Q2

Q∑
i=1

Q∑
j=1

cijsjsTi =
1

Q2

Q∑
i=1

Q∑
j=1

cjisjsTi

=
1

Q2

Q∑
i=1

Q∑
j=1

Cji =
1

Q2

Q∑
i=1

Q∑
j=1

Cij = C

Proposition 2.2. The contextual kernel CK∗ is a Mercer
kernel.

Proof. For simplicity, the term (exp(C) + ξIN ) is abbreviated as
fC . Since C is a symmetric matrix, fC is also a symmetric matrix:

fT
C = exp(CT ) + (ξIN )T = exp(C) + ξIN = fC

As a positive semi-definite matrix, fC can be decomposed into
UT ΛU = (UΛ

1
2 )T (UΛ

1
2 ), where Λ = diag(λ1, . . . , λN )

and U = (ui)
N
i=1 correspond to the eigenvalues and eigenvec-

tors of fC , respectively. As a result, fC(zi, zj) can be rewrit-
ten as the inner product of two terms: φ(zi)Tφ(zj), where
φ(z`) (1 ≤ ` ≤ N ) is a kernel mapping such that φ(z`) =
(
√
λ1u1(`), . . . ,

√
λNuN (`))T . Therefore, fC is a Mercer kernel.

As is known to us, the Gaussian RBF kernel K is also a Mercer
kernel. Being the element-wise product of two Mercer kernels K
and fC , CK∗ is consequently a Mercer kernel.

Fig. 2 gives an example of illustrating the differences
between the visual kernel K and the proposed contextual
kernel CK∗. Specifically, the face regions of the same per-
son in two different frames have different visual properties
due to illumination changes. Their visual kernel K is only
determined by the visual appearance properties of the two
face regions, as shown in the upper part of Fig. 2. How-
ever, the proposed contextual kernel CK∗ considers not
only the visual affinity relationship between the two face re-
gions but also the contextual interaction relationships (i.e.,
cross links) between their corresponding contexts, as shown
in the lower part of Fig. 2.
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Based on the contextual kernel CK∗, we can derive a
standard SVM optimization problem over the labeled sam-
ple set Zl. Mathematically, the dual form of the SVM opti-
mization problem can be formulated as:

max
α

∑γ
i=1 αi −

1
2

∑γ
i=1

∑γ
j=1 yiyjαiαjCK

∗(zi, zj)
s.t.

∑γ
i=1 yiαi = 0; 0 ≤ αi ≤ D

(13)

where yi ∈ {−1, 1}, γ is the size of Zl and D is a regular-
ization factor. After solving the optimization problem (13)
using the libsvm tool, an SVM classification function is ob-
tained as:

h(z) =
γ∑
i=1

αiyiCK
∗(z, zi) + b. (14)

In real tracking applications, the cardinality of Zl can
become larger and larger as new labeled samples from dif-
ferent frames are added to Zl. For computational efficiency,
we have to discard some older samples and retain the re-
cently added samples in the SVM training process. Specifi-
cally, we define a threshold T+ (or T−) to limit the positive
(or negative) sample size of Zl. If exceeding T+ (or T−),
the positive (or negative) sample size will be reduced to only
retain the last T+ (or T−) elements occurring recently. Al-
gorithm 1 gives more details.

Training sample selection In the proposed tracker, we
take a conventional strategy for training sample selection.
Namely, the image regions from a small neighborhood
around the object location are selected as positive samples,
and the negative samples are generated by selecting the im-
age regions which are relatively far from the object loca-
tion. Specifically, an ascending sort for the samples from
Zu is made according to their spatial distances to the cur-
rent object location, resulting in a sorted sample set Zsu. By
selecting the top (or bottom) 10% of the samples from Zsu,
we have a subset denoted as Z+

t (or Z−t ) , which is the final
positive (or negative) sample set. When t = 1 (i.e., in the
first frame), the object location is manually labeled. Zl is
equal to Z+

1

⋃
Z−1 .

3. Experiments
Video sequences We evaluate the proposed contextual

SVM tracker on six challenging videos, which are com-
posed of 8-bit grayscale images. All of the six videos are
captured with moving cameras in different scenes.

Video 1 A car runs fast in a dark road scene with back-
ground clutters and varying lighting conditions.

Video 2 A car runs in a highway with many shadows
(caused by bridges or trees). When the car crosses a bridge,
its appearance drastically changes because of the shadow
disturbance. Furthermore, the pose of the car gradually
changes over time.

Video 3 A man walks under a treillage. Meantime, sev-
eral events take place simultaneously, including drastic illu-
mination changes and head pose variations.

Video 4 A girl rushes along a pavement. Her appearance
varies with significant scale changes. In particular, she col-
lides with a man in the middle of the video, and then her
body drastically rotates.

Video 5 There is an ice hockey match. During the match,
there exist several events such as partial occlusions, out-of-
plane rotations, body pose variations, abrupt motion and so
on.

Video 6 Several skaters are dancing in a dark scene with
illumination changes. Their appearances drastically vary
due to several factors such as partial occlusions, body pose
variations, illumination changes and so forth.

Implementation details Six experiments on the above-
mentioned challenging six videos are conducted to demon-
strate the advantages of the proposed tracker using the graph
mode-based contextual kernel, referred to as CKST. The
proposed CKST is implemented in Matlab on a worksta-
tion with an Intel Core 2 Duo 2.66GHz processor and 3.24G
RAM. The average running time of the proposed CKST is
about two seconds per frame. The main computational time
of CKST is spent at Steps 3-5 in Algorithm 1. In prac-
tice, the parameters T+ and T− in Algorithm 1 are both set
to 500. For the sake of computational efficiency, we only
consider the object state information in 2D translation and
scaling in the particle filtering module. The particle number
at Step 1 in Algorithm 1 is set to 200. The scaling factor µ
defined in Eq. (1) is set to 1. The above parameter settings
remain the same in all the experiments.

We also compare the performance of CKST against six
other state-of-the-art trackers. Specifically, the six compet-
ing trackers are referred to as SVMWC (SVM without us-
ing the contextual information), MIBT (multiple instance
boosting-based tracker [9]), VTD (visual tracking decom-
position [17]), OAB (online AdaBoost [5]), IPCA (incre-
mental PCA [18]), and L1T (`1-minimization tracker [4]).
We use the source code of MIBT2, VTD3, OAB4, IPCA5,
and L1T6 from their websites.

The reasons for selecting the six competing trackers
are as follows. First, SVMWC is close to CKST while
SVMWC does not use the contextual information. More
specifically, SVMWC directly uses the Gaussian RBF ker-
nel (4) for SVM classification while CKST uses the con-
textual kernel (12) for SVM classification. Thus, the pur-
pose of comparing CKST with SVMWC is to verify the
superiority of CKST using the contextual information over
SVMWC. Second, MIBT is a recently proposed discrim-
inant learning-based tracker, which uses multiple instance
boosting for object/non-object classification. To deal with

2http://vision.ucsd.edu/∼bbabenko/project miltrack.shtml
3http://cv.snu.ac.kr/research/∼vtd/
4http://www.vision.ee.ethz.ch/boostingTrackers/download.htm
5http://www.cs.utoronto.ca/∼dross/ivt/
6http://www.ist.temple.edu/∼hbling/
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Figure 3: The tracking results of the seven trackers over the representative frames
(218, 248, 278, 309, 342, 391) of Video 1 in the scenarios with varying lighting
conditions and background clutters.

Figure 4: The tracking results of the seven trackers over the representative frames
(235, 286, 341, 392, 512, 559) of Video 2 in the scenarios with shadow disturbance
and pose variation.

the inherent ambiguity of object localization, MIBT utilizes
multiple instances for object representation. In comparison,
OAB utilizes online boosting for object/non-object classifi-
cation. Thus, comparing CKST with MIBT and OAB can
demonstrate the discriminative capabilities of CKST in han-
dling large appearance variations. Third, VTD is a recently
proposed tracker based on visual tracking decomposition.
Using sparse principal component analysis, VTD decom-
poses the observation (or motion) model into a set of ba-
sic observation (or motion) models, each of which covers
a specific type of object appearance (or motion). IPCA
uses incremental principal component analysis to construct
the eigenspace-based observation model for visual tracking.
L1T treats visual tracking as a sparse approximation prob-
lem using `1-regularized minimization. Thus, comparing
CKST with VTD, IPCA, and L1T can show their capabili-
ties of tolerating complicated appearance changes.

Tracking results Figs. 3–8 show the corresponding
tracking results (highlighted by the bounding boxes in dif-
ferent colors) of the seven trackers over the representative
frames of the six videos.

Video 1 After frame 271, VTD loses the car due to il-
lumination changes. Distracted by background clutters,
SVMWC, MIBT, L1T, and OAB fail to track the car after
frames 196, 211, 288, and 289, respectively. In comparison,
only CKST and IPCA succeed in tracking the car through-
out the video sequence.

Video 2 In face of both shadow disturbance and pose

Figure 5: The tracking results of the seven trackers over the representative frames
(343, 351, 372, 382, 422, 435) of Video 3 in the scenarios with drastic illumination
changes and head pose variations.

Figure 6: The tracking results of the seven trackers over the representative frames
(31, 45, 67, 100, 111, 119) of Video 4 in the scenarios with drastic scale changes and
body pose variations.

variation, SVMWC, MIBT, and OAB break down when
they track the car. In contrast, VTD is able to track the car
before frame 240. However, it tracks the car inaccurately
or unsuccessfully after frame 240. On the contrary, CKST
can track the car effectively in the situations of shadow dis-
turbance and pose variation throughout the video sequence.
Both IPCA and L1T achieve less accurate tracking results
than CKST.

Video 3 Under the circumstances of drastic changes in
environmental illumination and head pose, SVMWC loses
the face after frame 441 while MIBT, VTD, and OAB fail to
track the face after frames 201, 148, and 180, respectively.
IPCA loses the face after frame 201. L1T begins to lose
the face from frame 249. Compared with these competing
trackers, CKST can successfully track the face all the time.

Video 4 After colliding with another human body, the
human body significantly rotates, leading to the drastic ap-
pearance changes. In this case, MIBT, VTD, OAB, L1T,
and IPCA begin to lose the human body from frame 23.
SVMWC has difficulties in accurately tracking the human
body from frame 71 to frame 113, and it loses the human
body after frame 114. In contrast, CKST can successfully
deal with the difficulties caused by drastic body pose varia-
tion, and achieve robust tracking results.

Video 5 Four main factors cause the object appearance
changes, including partial occlusions, out-of-plane rota-
tions, body pose variations, and abrupt motion. From frame
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Figure 7: The tracking results of the seven trackers over the representative frames
(79, 452, 461, 515, 520, 530) of Video 5 in the scenarios with partial occlusions,
out-of-plane rotations, body pose variations, and abrupt motion.

Figure 8: The tracking results of the seven trackers over the representative frames
(282, 286, 289, 292, 296, 303) of Video 6 in the scenarios with partial occlusions,
body pose variations, and illumination changes.

36 to frame 328, MIBT achieves bad tracking performance.
After frame 408, MIBT loses the ice hockey player. VTD
and SVMWC lose the ice hockey player after frames 512
and 468, respectively. Both OAB and IPCA fail to track the
ice hockey player after frame 56. In contrast, CKST can
adapt to the object appearance changes caused by the four
factors, and achieve the most accurate tracking results.

Video 6 Starting from frame 287, VTD fails to track
the dancer while SVMWC and MIBT achieve inaccurate
tracking results. IPCA, L1T, and OAB lose the dancer
after frames 48, 275, and 279, respectively. In compari-
son, CKST can adapt to the object appearance changes, and
achieve robust the most accurate tracking results in the sit-
uations of partial occlusions, body pose variations, and illu-
mination changes.

Quantitative comparison The object center locations are
labeled manually and used as the ground truth. Hence, we
can quantitatively evaluate the tracking performances of the
seven competing trackers by computing their correspond-
ing pixel-based tracking location errors to the ground truth.
Fig. 9 plots the tracking location error plots (highlighted in
different colors) obtained by the seven trackers in the six ex-
periments. Further, we also compute the mean of the track-
ing location errors in the six experiments, and report the
results in Table 1. From Fig. 9 and Table 1, we can see that
the proposed CKST achieves the most robust and accurate
tracking performance over the six video sequences.

Figure 9: The tracking location error plots obtained by the seven trackers over the
six videos.

Discussion The reasons why the proposed CKST out-
performs the six other competing trackers are briefly an-
alyzed as follows. Both VTD and IPCA are based on
principal component analysis which is sensitive to noises
and outliers. During tracking, large appearance changes
caused by complex factors (e.g., partial occlusions, abrupt
motion, drastic illumination changes, or drastic pose varia-
tions) can introduce a large number of outliers to the train-
ing data. Using the polluted training data, both VTD and
IPCA may learn an inaccurate or wrong subspace model for
object representation, leading to inaccurate or wrong track-
ing results. Moreover, neither of VTD and IPCA takes the
object/non-object discriminative information into account,
resulting in the distractions by background. L1T performs
dynamic template learning for object tracking. In the pres-
ence of drastic appearance variations caused by occlusions,
L1T may utilize incorrect appearance information in learn-
ing and updating templates. OAB learns an AdaBoost clas-
sifier for object tracking. Since ignoring the spatial con-
textual relationships among samples, OAB is sensitive to
noises and outliers. MIBT learns a multiple-instance boost-
ing classifier for object tracking. Since representing an ob-
ject as multiple instances, MIBT may introduce many false
positive samples in the process of boosting learning, leading
to tracking degradations or even failures. Without consid-
ering the contextual information among samples, SVMWC
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Table 1: Quantitative comparison results of the seven trackers over the six videos
(referred to as Vk for k = 1, . . . , 6). We report the mean of their tracking location
errors over the six videos.

V1 V2 V3 V4 V5 V6

CKST 2.7 8.1 5.2 17.7 3.3 6.9
SVMWC 36.6 154.6 25.7 37.2 15.6 32.2

MIBT 45.5 144.7 59.9 95.4 111.9 46.1
VTD 32.7 194.5 51.1 151.2 14.8 11.4
OAB 22.8 209.1 106.5 114.9 102.8 56.1
IPCA 3.9 17.9 46.4 152.1 127.9 113.4
L1T 26.6 9.9 27.7 139.2 59.8 14.2

cannot effectively adjust the SVM’s separating hyperplane
to adapt to complicated object appearance changes during
tracking. By the graph mode seeking procedure, the pro-
posed CKST is able to capture the intrinsic contextual in-
formation (i.e., graph modes and their interactions) from
samples. The intrinsic contextual information can reflect
the high-order interaction relationships among samples (il-
lustrated in Fig. 1(d)), leading to the robustness of CKST to
noises, outliers, and complicated appearance changes. By
embedding the intrinsic contextual information into SVM,
CKST is capable of learning an effective separating hyper-
plane for object/non-object classification, leading to robust
tracking results.

4. Conclusion

We have proposed a graph mode-based contextual ker-
nel for robust SVM tracking. In this work, a set of high-
order contexts are discovered and combined into the track-
ing process. The problem of discovering these high-order
contexts is formulated as graph mode seeking, which can
be efficiently solved using graph shift [15]. Each graph
mode corresponds to a mode-specific vertex context, in
which the graph vertexes share some common visual prop-
erties. Furthermore, we design a contextual kernel to cap-
ture the interaction information between the mode-specific
vertex contexts. We theoretically prove that this contex-
tual kernel is a Mercer kernel. Therefore, embedding this
contextual kernel into the standard SVM, the global opti-
mum is guaranteed. We incorporate this contextual ker-
nel into the object/non-object SVM classification scheme
for visual tracking. Compared with several state-of-the-art
trackers, the proposed CKST tracker is more robust to illu-
mination changes, pose variations, partial occlusions, back-
ground clutters, and complicated appearance changes. Ex-
perimental results on challenging videos have demonstrated
the effectiveness and robustness of the proposed CKST.
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